top of page

MTJ:

Highest TMR (604%) in MTJ so far reported:

 

  • S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, and H. Ohno. Tunnel Magnetoresistance of 604% at 300 K by Suppression of Ta Diffusion in CoFeB/ MgO/CoFeB Pseudo-Spin-Valves Annealed at High Temperature. Appl. Phys. Lett. 2008, 93, pp 082508–082508.

 

First Report on nanometer-sized MgO based PMA MTJ with TMR 120%:

 

  • S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, and H. Ohno. A Perpendicular-Anisotropy CoFeB–MgO Magnetic Tunnel Junction. Nature Mater 2010, 9, pp 721–724.

 

First Reports on MgO based In-plane MTJ with large TMR:

 

TMR (180%) with Fe/MgO/Fe:

  • S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando. Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions. Nature Mater. 2004, 3, pp 868–871.

 

TMR (220%) with CoFe/MgO/CoFe:

  • S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang. Giant Tunnelling Magneto-

resistance at Room Temperature with MgO (100) Tunnel Barriers. Nature Mater 2004, 3, pp 862–867.

 

Reviews on MTJ:

 

Overall Review:

  • J.G. Zhu, and C. Park. Magnetic Tunnel Junctions. Materials Today 2006, 9, pp 36-45

 

  • C. Chappert, A. Fert and F. N. Van Dau. The emergence of spin electronics in data storage. Nat. Mater. 2007, 6, pp 813–823

 

  • A. Brataas, A. D. Kent and H. Ohno. Current-induced torques in magnetic materials. Nature Mater. 2012, 11, pp 372–381.

 

  • T. Kawahara, K. Ito, R. Takemura and H. Ohno. Spin-transfer torque RAM technology: Review and prospect. Microelectronics Reliability. 2012, 52, pp 613–627.

 

  • Failure analysis in magnetic tunnel junction nanopillar with interfacial perpendicular magnetic Anisotropy. W. Zhao, X. Zhao, B. Zhang, K. Cao, L. Wang, W. Kang, Q. Shi, M. Wang, Y. Zhang, Y. Wang, S. Peng, J.-Olivier Klein, L. A. de Barros Naviner and D. Ravelosona. Materials. 2016, 9, 41, pp 1-17.

 

MgO-based MTJ:

  • S. Yuasa, and D. D. Djayaprawira.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 01) barrier. J. Phys. D: Appl. Phys. 2007, 40, pp R337–R354

 

PMA MTJ:

  • M. Wang, Y. Zhang, X. Zhao and W. Zhao. Tunnel Junction with Perpendicular Magnetic Anisotropy: Status and Challenges, Micromachines 2015, 6, pp 1023-1045.

 

Strain-Based MTJ:

 

Experiment with straintronic MgO-based MTJ:

  • Z. Zhao, M. Jamali, N. D'Souza, D. Zhang, S. Bandyopadhyay, J. Atulasimha, and J.-P. Wang, Giant voltage manipulation of MgO-based magnetic tunnel junctions via localized anisotropic strain: A potential pathway to ultra-energy-efficient memory technology. Appl. Phys. Lett. 2016, 109, pp 092403-1-092403-5

 

Experiment with straintronic Al2O3 based MTJ:

  • P. Li, A. Chen, D. Li, Y. Zhao, S. Zhang, L. Yang, Y. Liu, M. Zhu, H. Zhang, and X. Han. Electric Field Manipulation of Magnetization Rotation and Tunneling Magnetoresistance of Magnetic Tunnel Junctions at Room Temperature, Adv. Mater. 2014 26, pp 4320–4325.

 

Memory Proposals of straintronic MTJ:

 

  • A. K. Biswas, S. Bandyopadhyay, and J. Atulasimha, Complete magnetization reversal in a magnetostrictive nanomagnet with voltage generated stress: A reliable energy-efficient non-volatile magneto-elastic memory. Appl. Phy. Lett. 2014, 105, pp 072408-1-072408-5;

 

  • A. Khan, D. E. Nikonov, S. Manipatruni, T. Ghani, and Ian A. Young, Voltage induced magnetostrictive switching of nanomagnets: Strain assisted strain transfer torque random access memory, Appl. Phy. Lett. 2014, 104, 262407-1-262407-5.

 

 

Spin-based Neural Network:

 

Spin Current based:

  • V. Q. Diep, B. Sutton, B. Behin-Aein, and S. Datta, Spin switches for compact implementation of neuron and synapse. Appl. Phy. Lett. 2014. 104, pp. 222405-1-222405-5

 

  • A. F. Vincent, J. Larroque, N. Locatelli, N. B. Romdhane, O. Bichler, C. Gamrat, W. S. Zhao, J.-O. Klein, S. G.-Retailleau, and D. Querlioz, Spin-transfer torque magnetic memory as a stochastic Memristive synapse for neuromorphic systems, IEEE Trans. Bio. Cir. Sys., 2015, 9, pp 166-174.

 

Spin-orbit torque based:

  • A. Sengupta, Z. A. Azim, X. Fong, and K. Roy. Spin-orbit torque induced spike-timing dependent plasticity, Appl. Phy. Lett. 2015, 106, pp 093704-1-093704-5.

 

  • G. Srinivasan, A. Sengupta and K. Roy, Magnetic tunnel tunction based long-term short-term stochastic synapse for a spiking neural network with on-chip STDP learning, Scientific Reports, 2016, 6:29545, pp 1-13.

 

Strain-based:

  • A. K. Biswas, J. Atulasimha, and S. Bandyopadhyay, The straintronic spin-neuron, Nanotechnology 2015, 26 pp 285201-1-285201-10

Strain-based magnetization paper (not the complete MTJ)

Works from UCLA group:

 

  • C.-Y. Liang, S. M. Keller, A. E. Sepulveda, W.-Y. Sun, J. Cui, C. S. Lynch, and G. P. Carman. Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—analysis. J. Appl. Phys. 2014, 116, pp 123909-1–123909-9.

 

  • T. Wu, A. Bur, K. Wong, P. Zhao, C. S. Lynch, P. K. Amiri, K. L. Wang, and G. P. Carman. Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl. Phys. Lett. 2011, 98, pp 262504-1–262504-3.

 

  • C.-Y. Liang, A. Sepulveda, S. Keller, and G. P. Carman. Deterministic switching of a magnetoelastic single-domain nano-ellipse using bending. J. Appl. Phys. 2016, 119, pp 113903-1–113903-8.

 

  • J. Cui, J. L. Hockel, P. K. Nordeen, D. M. Pisani, C.-y. Liang, G. P. Carman, and C. S. Lynch. A method to control magnetism in individual strain-mediated magnetoelectric islands. Appl. Phys. Lett. 2013, 103, pp 232905-1–232905-5.

 

  • X. Li, D. Carka, C.-y. Liang, A. E. Sepulveda, S. M. Keller, P. K. Amiri, G. P. Carman, and C. S. Lynch. Strain-mediated 180° perpendicular magnetization switching of a single domain multiferroic structure. J. Appl. Phys. 2015, 118, pp 014101-1–014101-8.

  • M. Buzzi, R.V. Chopdekar, J. L. Hockel, A. Bur, T. Wu, N. Pilet, P. Warnicke, G. P. Carman, L. J. Heyderman, and F. Nolting, Single Domain Spin Manipulation by Electric Fields in Strain Coupled Artificial Multiferroic Nanostructures. Phys. Rev. Lett. 2013, 111, pp 027204-1–027204-5.

 

 

 

Works from VCU group:

 

  • J. Atulasimha and S. Bandyopadhyay. Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Appl. Phys. Lett. 2010, 97, pp 173105-1–173105-3.

 

  • K. Roy, S. Bandyopadhyay, and J. Atulasimha, Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing, Appl. Phys. Lett. 2011, 99, pp 063108-1- 063108-3.

 

  • V. Sampath, N. D’Souza, D. Bhattacharya, G. M. Atkinson, S. Bandyopadhyay, and J. Atulasimha, Acoustic-Wave-Induced Magnetization Switching of Magnetostrictive Nanomagnets from Single-Domain to Nonvolatile Vortex States,  Nano Lett. 2016. 16, pp 5681–5687.

 

  • V. Sampath, N. D’Souza, G. M. Atkinson, S. Bandyopadhyay, and J. Atulasimha, Experimental demonstration of acoustic wave induced magnetization switching in dipole coupled magnetostrictive nanomagnets for ultralow power computing,  Appl. Phys. Lett. 2016. 109, 102403-1–102403-4.

 

  • N. D’Souza, M. S. Fashami, S. Bandyopadhyay, and J. Atulasimha, Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic, Nano Lett. 2016, 16, pp 1069-1075. 

 

  • A. K. Biswas, H. Ahmad, J. Atulasimha, S. Bandyopadhyay, Experimental demonstration of all straintronic memory device: a complete 180â—¦ switching, Under Review, 2016

 

 

Works from CNRS group:

 

  • N. Tiercelin, Y. Dusch, V. Preobrazhensky, and P. Pernod. Magnetoelectric memory using orthogonal magnetization states and magnetoelastic switching. J. Appl. Phys. 2011, 109, pp 07D726-1– 07D726-3.

 

  • S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod and V. Preobrazhensk, Thermal effects in magnetoelectric memories with stress-mediated switching, J. Phys. D: Appl. Phys, 2013, 46,  325002, pp 1-12.

 

  • S. Giordano, Y. Dusch, N. Tiercelin, P. Pernod and V. Preobrazhensk, Combined nanomechanical and nanomagnetic analysis of magnetoelectric memories, Phys. Rev. B, 2012, 85, 15532, pp 1-14.

 

 

Works from Russian group:

 

  • N. A. Pertsev and H. Kohlstedt. Magnetic tunnel junction on a ferroelectric substrate. Appl. Phys. Lett. 2009, 95, pp  163503-1-  163503-3.

 

Works from other groups:

 

  • T. Brintlinger, S.-H. Lim, K. H. Baloch, P. Alexander, Y. Qi, J. Barry, J. Melngailis, L. Salamanca-Riba, I. Takeuchi, and J. Cumings. In Situ Observation of Reversible Nanomagnetic Switching Induced by Electric Fields. Nano Lett. 2010, 10,  pp 1219-1223.​​

  • P. Li, A. Chen, D. Li, Y. Zhao, S. Zhang, L. Yang, Y. Liu, M. Zhu, H. Zhang, and X. Han, Electric field manipulation of magnetization rotation and tunneling magnetoresistance of magnetic tunnel junctions at room temperature. Adv. Mater. 2014. DOI: 10.1002/adma.201400617, pp 1-6.

bottom of page